
TAESim: A Testbed for IoT Security Analysis of
Trigger-action Environment

Xinbo Ban1,2[0000−0002−3847−7483], Ming Ding3[0000−0002−3690−0321],
Shigang Liu1[0000−0002−3122−6745], Chao Chen4[0000−0003−1355−3870],

Jun Zhang1[0000−0002−2189−7801], and Yang Xiang1[0000−0001−5252−0831]

1 Swinburne University of Technology, Melbourne 3122, Australia
{XBan, ShigangLiu, JunZhang, YXiang}@swin.edu.au

2 Data61, CSIRO, Sydney 2015, Australia
Xinbo.Ban@data61.csiro.au

3 Information Security and Privacy Group, Data61, CSIRO, Sydney 2015, Australia
Ming.Ding@data61.csiro.au

4 James Cook University, Townsville 4811, Australia
Chao.Chen@jcu.edu.au

Abstract. The Internet of Things (IoT) networks promote significant
convenience in every aspect of our life, including smart vehicles, smart
cities, smart homes, etc. With the advancement of IoT technologies, the
IoT platforms bring many new features to the IoT devices so that these
devices can not only passively monitor the environment (e.g. conven-
tional sensors), but also interact with the physical surroundings (e.g.
actuators). In this light, new problems of safety and security arise due
to the new features. For instance, the unexpected and undesirable physi-
cal interactions might occur among devices, which is known as inter-rule
vulnerability. A few work have investigated the inter-rule vulnerability
from both cyberspace and physical channels. Unfortunately, only few re-
search papers take advantage of run-time simulation techniques to prop-
erly model trigger action environments. Moreover, no simulation plat-
form is capable of modeling primary physical channels and studies the
impacts of physical interactions on IoT safety and security. In this paper,
we introduce TAESim, a simulation testbed to support reusable simu-
lations in the research of IoT safety and security, especially for the IoT
activities in home automation that could involve possibly unexpected
interactions. TAESim operates over MATLAB/Simulink and constructs
a digital twin for modeling the nature of the trigger-action environment
using simulations. It is an open-access platform and can be used by the
research community, government, and industry who work toward pre-
venting the safety and security consequences in the IoT ecosystem. In
order to evaluate the effectiveness and efficiency of the testbed, we con-
duct some experiments and the results show that the simulations are
completed in a few seconds. We also present two case studies that can
report unexpected consequences.

Keywords: IoT Security · SmartThings · Inter-rule vulnerability · Sim-
ulation.



2 Ban et al.

1 Introduction

Internet of Things (IoT) greatly revolutionizes home automation due to the
exponential growth of IoT devices. It is expected to have over 50 billion IoT
devices connected to the Internet by the end of 2020 [20]. Although the IoT
technologies can offer a lot of convenience, new concerns have been raised about
the safety and security of the smart home environment [2][7]. For instance, Mi-
rai malware launched a large-scale Distributed Denial of Service (DDoS) attack
through controlling over 600,000 vulnerable IoT devices [31]. The adversary can
break into the home network by exploiting the flaw in firmware [44]. More specif-
ically, a worm could self-replicate and spread throughout ZigBee among smart
bulbs [42]. Moreover, design flaws have been recently found in the SmartThings
platform and vulnerable third-party applications could compromise the platform
[22]. Some work investigate the possibility of launching attacks by leveraging the
physical capabilities of IoT devices. For example, a smart bulb could eavesdrop
the sensitive traffic and expose it by flashing the light stealthily [41].

The recent research has improved the IoT safety and security by working at
addressing the traditional issues of IoT security including design flaws [22] [24]
[29] [50], malware [22] [44], protocol vulnerabilities [27] [33] [40] and firmware
vulnerabilities [26] [44]. Different from these work, we focus on a new type of
safety and security issue caused by the inter-rule vulnerability. Due to the in-
creasing complexity of smart home configuration, IoT apps are co-employed in
an environment and they can interact with each other via a common device.
Besides, some IoT devices can not only communicate via network but also have
the functionalities of sensing and affecting the physical environment. These in-
teractions may lead to undesired and unexpected consequences. The attack can
be launched to leave the user in a risky state. For example, the door is unlocked
when there is no person at home or the heater is turned off to create the ‘unpleas-
ant’ state when it is winter. In order to alleviate the security problem caused by
the interactions of IoT devices and apps, some research recently shed light on
the discovery of the risky interactions [10][17][8][36][14].

According to [19], there are two types of the interactions given an IoT envi-
ronment with IoT apps and devices co-employed:

– Cyberspace interaction. The network enables the interaction of apps via the
channels in cyberspace such as time, and home mode. For instance, given two
apps, a light is turned on when the sunsets and a door is unlocked when this
light is on [10]. The event light.on is shared in the same device in cyberspace.
The term ‘cyberspace interaction’ represents IoT app interaction when IoT
apps operate on the same device.

– Physical interaction IoT has a unique feature that devices can interact with
each other via physical channels such as temperature, illuminance, and hu-
midity [17][4]. For example, an app turns on a heater and another app opens
a window when the temperature is higher than a threshold. The heater and
the temperature sensor are connected through a temperature channel then
a physical interaction is generated.



TAESim: A Testbed for IoT Security Analysis of Trigger-action Environment 3

Cyberspace interactions consist of one or multiple IoT apps and they can
leave users in an unexpected state. Some research such as Soteria [8] and IoTSan
[36] utilized a collection of safety policies to assess the safety and security of an
IoT ecosystem. More specifically, they discovered the cyberspace interactions
that violate the designed safety policies through model checking. For example,
conflicts usually happen when several IoT apps control a common IoT device.

Physical interactions can also lead to insecure situations, in which the adver-
saries can exploit the vulnerability. For instance, an app can control the window
when the temperature rises above a threshold and it exposes a potential break-in
vulnerability if a burglar manipulates the temperature. IoTMon [17] leveraged
static analysis techniques to discover all potentially vulnerable physical inter-
actions. Differently, IoTGuard [10] and IoTSafe [19] are dynamic solutions to
enforce the safety policy at run-time. IoTGuard mainly focuses on cyberspace
interactions in an IoT ecosystem and IoTSafe aims to capture real physical in-
teractions.

Different from cyberspace interaction, physical interaction faces more chal-
lenges for analysis. Firstly, static analysis techniques poorly explore the possible
paths for physical interaction since it highly depends on the real-world environ-
ment. For example, a program executed on a computer has the same behavior
wherever the computer is. However, an IoT app operates variously if the physical
channels differ. Secondly, dynamic analysis techniques rely on the development of
program simulation. For instance, the fuzzing technique runs the program and
mutates the input cases until a crash occurs. However, applying similar tech-
niques for IoT apps cannot resolve this situation because physical interactions
affect the operation of IoT apps in a different environment. IoTSafe successfully
modeled the physical channels depending on the employment of real devices and
sensors. However, the input cases have poor scalability, which means that they
cannot represent diverse scenarios. Moreover, recent work depend on the Smart-
Things simulator, which requires the instrumentation in early-stage and limits
the variety of IoT devices. In order to fill this gap, we propose a testbed to sim-
ulate the vast number of possible cyberspace and physical interactions among
multiple IoT devices and apps.

In this paper, we present a proof of concept of a simulation testbed, TAESim,
for IoT security of trigger-action platform, which is not included in previous
studies. Our method addresses the main challenges of the IoT trigger action se-
curity analysis and makes the IoT environment simulation possible. By taking
advantage of MATLAB/Simulink, we implement a testbed with the capacity for
expansion, and it can properly model the behavior of the channels and devices.
In the proposed testbed, multiple IoT apps can be executed simultaneously, and
joint behavior on channels from multiple devices can be represented as well.
We implement several devices, two cyberspace channels (i.e., time and home
state) and seven physical channels (i.e., temperature, humidity, smoke, motion,
illumination, ultraviolet, and water). It is worth noting that more devices and
channels can be added to the simulation testbed. Moreover, the testbed is al-
lowed to randomly adopt unexpected factors such as human interaction, sudden



4 Ban et al.

shutdown, etc. Furthermore, the proposed testbed supports several research di-
rections. For example, simulating the IoT system before installing devices and
apps at home, or creating the corresponding digital twin to predict future behav-
ior for the inter-rule vulnerability. We also verify the effectiveness and efficiency
of the testbed. The simulation results demonstrate that our testbed can prop-
erly model the interactions between devices and the joint effects on the physical
channels. Although some other testbeds have been proposed in previous work,
there is widely adopted testbed for researching safety and security of trigger-
action environemnt. Han et al [28] proposed a simulation toolkit, DPWSim, for
supporting the development of IoT application that used Devices Profile for
Web Services. Lee et al. [32] proposed CyPhySim that leveraged the state ma-
chine, continuous-time solver, and discrete-event simulation engine to simulate
an cyber-physical system. FIT loT-LAB, presented by Adjih et al. [1] composed
thousands of wireless nodes to accelerate the IoT development. Comparatively,
our proposed testbed investigates the practical interaction modeling and has
substantial scalability and superior performance.

The rest of the paper is organized as follows. Section 2 presents the related
work and motivation of this paper. In order to establish this testbed for IoT
security research, we discuss the main challenges in modeling the IoT trigger-
action environment and assessing its safety and security. Section 4 introduces the
details of the components in the implementation of the TAESim. We evaluate
the efficiency of the testbed and present the representative case studies in Section
5. Finally, Section 6 concludes this paper.

2 Related Work and Motivation

This paper aims at modeling the trigger-action environment that can be helpful
at steps in the assessment of security, safety, and privacy of IoT automation
systems. We first reviewed the recent work and present the motivation of our
proposed testbed.

2.1 Related work

Previous work have proved that static techniques can identify and improve IoT
safety and security. Without executing programs, it provides scalability espe-
cially when the large-scale study is performed. Fernandes et al. [22] analyzed
the SmartApps obtained from the official store in 2016 and identified that over
55% of them were vulnerable to the over-privileged attacks. Besides, they re-
ported that no sufficient protection was provided from SmartThings for the
sensitive data, which leaded to exploitable vulnerabilities such as event spoofing
and leakage. SAINT [7] detected the sensitive data flow by tracking the sensitive
sources to the external sinks in the information flows. SOTERIA [8] leveraged
model checking to discover the violations based on the user-defined security and
safety properties. Similarly, IotSan [36] verified the security and safety proper-
ties using model checking especially focusing on the interactions between devices



TAESim: A Testbed for IoT Security Analysis of Trigger-action Environment 5

and apps. However, both SOTERIA and IotSan only consider cyberspace inter-
actions in the proposed approaches. IoTMon [17] first discovered all potential
physical interaction chains from the IoT apps and reported security and safety
risks. Nevertheless, it cannot find the violations for run-time policy violations in
real-world IoT deployments as well.

On the other hand, the results from the static analysis on IoT apps can pro-
vide rich information to guide run-time enforcement. SmartAuth [48] used the
static analysis model obtained from the descriptions of IoT apps to keep the
run-time behaviors of IoT apps consistent. It alleviated the security threats of
over-privileged IoT apps. FlowFence [23] addressed the data leakage and permis-
sion abuse issues through leveraging the information flow resulting in blocking
undefined ones. HoMonit [51] analyzed the source code of IoT apps and de-
fined a normal traffic behavior model to detect the risky behaviors at run-time.
IoTGuard [10] enforced the policies in multi-app environments to detect the vio-
lations by means of chaining rules and analyzing their reachability. IoTSafe [19]
practically inspected physical interactions in a IoT environment and dynamically
assessed the safety and security of it.

2.2 Motivation

An IoT device can not only be triggered by the cyberspace event and the physical
channels but also exert influence on the physical environment (e.g. temperature,
humidity, brightness). The attacker can exploit an IoT environment via an inse-
cure and unsafe interaction leading the users to be in an unexpected state [17].
For example, if a robot vacuum is tampered with, the window could be opened
via the physical motion interaction. Given three apps, a home mode app, a win-
dow app, and a robot app, a potentially unsafe interaction might exist in this
smart home. The first app assigns the home mode ‘Occupied’ when the motion
sensor detects a movement.

The window app controls the window to be opened if the temperature rises
above a threshold and the home mode is ‘Occupied’. The robot app sets a timer
to trigger a vacuum operation. In this example, the temperature near the ther-
mometer sensor could be raised above 85F to trigger a window opening action,
which may leave home in a potentially unsafe situation, such as burglar break-in.

This type of vulnerability is called inter-rule vulnerability and it is very
difficult to be identified by a manual process. Different from the software and
hardware vulnerability, inter-rule vulnerability potentially exists in the interac-
tions between devices. It is an unexpected consequence after the devices interact
with each other. On the other hand, it is similar to the traditional vulnerabil-
ity because it directly leaves the user in an unsafe state or can be exploited by
adversaries. There are a few factors that might lead to inter-rule vulnerability
including malicious apps, broken devices, user’s vulnerable configurations, etc.
Meanwhile, many research work aim at eliminating the real-world risks through
dynamically discovering the vulnerabilities in run-time before the users set up the
devices in an IoT ecosystem. The authors deploy the apps on the SmartThings
simulator to capture the run-time information including the device status and



6 Ban et al.

user’s configurations but there are some limitations. Firstly, although it provides
a collection of the devices for selection, new products are often not available in
the simulator. Secondly, SmartThings simulator is running on the online server
maintained by Samsung. Previous work leveraged a collection of SmartThings
commands from its documentation for information collection in run-time. So,
it is necessary to instrument the target apps before dynamic analysis starts.
Moreover, if the SmartThing server does not allow the data exchange for secu-
rity consideration, it will be impossible to utilize the SmartThing simulator for
security analysis. So, we are motivated to propose a dynamic analysis simulator
that is capable of modeling IoT environments including channels, devices, and
apps.

3 Challenges in Testbed Simulation

Compared to traditional computing platform, IoT reveals several unique func-
tional characteristics while it poses unusual challenges in terms of code analysis
for security. In order to properly model the IoT environment and propose the
testbed, we focus on the trigger action environment and discuss the challenges
that a simulation testbed faces. In this section, we present five challenges from
different aspects, including physical channels modeling, IoT apps modeling, au-
tomated test-case generation, multiple apps analysis, and interactions between
IoT devices and apps.

Physical channels modeling: A vulnerability can potentially lead the pro-
gram to crash, thus the system is at risk. IoT devices that execute the program
in firmware are in the same danger as well. Differently, the physical channels
are interacted into cyberspace connectivity by IoT devices. It can achieve un-
expected consequences that the IoT apps deviate from the device functionality
caused by the misuse of physical channels. For example, the temperature can be
increased through maliciously turning on a heater by an adversary. Once it ex-
ceeds a threshold, the window will be opened. The heater-temperature-window
interaction leads the room to be insecure and unsafe. Therefore, a burglar can
break into the house by controlling the indoor temperature.

Besides, the physical channels and the joint influence of physical channels are
different from the consequence of a single device when multiple IoT devices and
apps operate together. For instance, the temperature is rising quickly when a
heater and an AC operate together. So the safety and security of apps of trigger
action platforms not only affect the stability of the program but also raise the
concerns on the physical environment.

IoT apps modeling: Most of the IoT devices usually constitute a complex
system, and it is hard to conduct a security assessment on them. In other words,
these systems cannot be executed and analyzed directly in a short time, which
requires appropriate simulation to accurately execute and analyze these kinds of
IoT systems. Importantly, the state and computational logic among these devices
should be able to be gathered during the simulation process on the heterogeneous
IoT system [30]. In addition, it is worth noting that simulating the physical



TAESim: A Testbed for IoT Security Analysis of Trigger-action Environment 7

channels is difficult, including temperature, humidity, illuminance, etc. Similar
to cyber-physical system simulation, it must involve the evolution of IoT system
state over time. So those requirements prompt to develop a simulator that can
execute the IoT apps by means of a discrete-event simulation engine through
continuous-time solvers and state machine-based modeling [32]. Many research
explored the demands of IoT system modeling and simulation [1][16][28][32]. For
example, IoTify provides the virtual device simulation on the cloud for IoT app
development [30]. However, existing simulators mainly focus on the development
of IoT device functionalities and often adopt the SmartThings web-based IoT
simulator. These simulators insufficiently support the diverse IoT devices and
apps, which limits the various functionality simulation for IoT apps.

Automated test-case generation: A requirement of the dynamic analysis
deployment is the input data for program execution. Generally, inputs are the
entry points of a program. For IoT apps, the event triggers of IoT apps can be
considered as the inputs. Since input generation needs to be scalable, systematic,
and automated, it introduces the difficulties of input generation for IoT apps,
which manage multiple devices with different states. For instance, the thermostat
has an integer value attribute that introduces a large space for input generation
and a large number of test cases.

Fuzzing and symbolic execution are usually utilized for input generation and
code coverage increase. Fuzzing feeds the randomly generated inputs to an ex-
ecuted app, while symbolic execution explores the paths using symbolic inputs
[5]. For example, IoTFuzzer [11] identified contents of IoT apps through dynamic
analysis and discovered the memory corrupted vulnerabilities based on the mu-
tation. Meanwhile, many work leveraged heuristics that intelligently explored
the code paths via input generation guidance to avoid redundants [6] [15] [34]
[39] [49]. Yet, to our knowledge, tools that automate test input data and event
generation to execute IoT apps are non-existent. This motivates us to improve
test-case generation techniques as applied to IoT in the future.

Multiple apps analysis: Individual app analysis always focuses on the
single app in isolation while multiple apps analysis investigates the joint behavior
of several apps. In an IoT environment, apps can interact via the devices or events
in two ways: (1) when a device attribute is changed by an event handler and
this behavior triggers another event of a device. For instance, when the smoke is
detected, a light is turned, then the window is closed because the light is turned
on; (2) multiple apps operate on the same device. For example, the water valve
is closed when the leak is detected meanwhile it should be opened when the
sprinkler is activated by a smoke detector;

Although all individual apps are verified that each of them is secure and safe,
the interactions still can cause security and safety issues [9] [13] [18] [37]. To avoid
the unexpected consequence through interactions, identifying the interactions
is essential for securing the IoT environment with multiple apps employed. It
motivates us to develop the dynamic approach for checking that the IoT apps
conform to safety properties when interacting with each other.



8 Ban et al.

Interactions between IoT devices and apps: The services from trigger-
action platforms can be connected and employed simultaneously, including IFTTT,
Zapier, and Apiant. This platform provides a collection of APIs that allow users
to authorize services. For instance, a user with a SmartThings IoT platform
account can authorize the SmartThings service through the OAuth protocol to
communicate with their SmartThings account. REST APIs support the service
communication based on HTTP protocol [25]. So users are capable to create
their personally customized automation through using rules, which connect the
trigger event and the action event. When the event happens as the trigger in
service, the action of the rule is automatically operated in another service.

The interactions between IoT apps from different trigger action platform can
make the IoT environment insecure and unsafe [3] [10] [46]. The analysis of in-
teractions between IoT apps requires Natural Language Processing for the key
information extraction. Specifically, rules called IoT apps, automated the de-
vice behavior via either cyberspace interaction or physical interaction. So, it is
necessary to figure out the types of devices, channels, and events in the rules.
No matter what platforms the IoT system uses, determining the key informa-
tion from the description of rules can be accomplished using advanced natural
language processing techniques.

4 TAPSim: A Simulation Testbed

4.1 Overview

To model the trigger-action environment and address the challenges for the IoT
scenario simulation, we propose TAPSim to simulate the behaviors of the IoT
devices, apps, and interaction channels. We use MATLAB/Simulink as the sim-
ulation engine because it fits the requirements of the proper discrete-event sim-
ulation.

MATLAB is a programming and numeric computing platform for data anal-
ysis, algorithms development, and model creation. It integrates Simulink that
is a block diagram environment for multi-domain simulation and Model-Based
Design, enabling the algorithms incorporation and result analysis. Simulink pro-
vides a graphical editor, customizable block libraries, and solvers for model-
ing/simulating dynamic systems. We find that MATLAB/Simulink is proper for
the simulation of an interactive IoT system. We create the complex digital twin
of smart home through system componentization and reuse components through-
out the model with subsystems and model references. The detailed components
will be discussed in the following sections.

4.2 Devices

In this section, we present the way to model the IoT devices in this testbed.
Simulink provides a block, Data Store Memory, to store a global variable during
the simulation. It meets the demands of the modeling status of the device (e.g.



TAESim: A Testbed for IoT Security Analysis of Trigger-action Environment 9

Fig. 1: An IoT device (heater) modeled in Simulink
on and off). For example, in Figure 1, we create a Data Store Memory block for
storing the device state.

Initially, the default value is set up with 0 and can be randomly specified
for test case generation. In the properties page of each Data Memory block, it
allows to visually input a default value from the Signal Attributes tab. Value
0 or 1 for each Data Store Memory block represents on or off for status of the
relevant device. We also create a value output module for saving and sending the
device state with the time series. It consists of three blocks: Data Store Read,
UDP Send, and To Workplace.

Data Store Read block outputs the value of the corresponding device state
at every sampling time. We connect this block to the other two blocks for data
saving and sending. The upper one, the UDP Sender block could send its received
value to a particular IP address based on UDP communication for data storage.
We create this block for further research if users need to communicate with the
analysis engine. Besides, the To Workspace block saves the input signal to a
workspace during simulation. When the simulation is paused or completed, the
data written in the workspace can be retrieved or viewed visually.

Our testbed considers smart plugs as the particular smart devices that plug
connect to. For instance, a plug is viewed as a bulb when a smart plug connect
to a bulb The plug is modeled as an integral part of its connected device because
these kinds of devices have limited functions like turning on and off.

A device can affect one or multiple physical channels. So we need to identify
the physical channels and interactions between them. Many research discovered
the potential physical interactions among IoT devices [9][14][18][37]. They stat-
ically analyzed the IoT apps to construct a Dependency Graph and discover
the possible physical channels and corresponding interactions. The physical in-
teractions between devices are context-sensitive in a real-world IoT system. To
capture the real physical channels, Ding et al. [19] dynamically identified the
real and context-sensitive physical interactions using the practical devices. The
results are shown in Table 1.



10 Ban et al.

In this study, we model the physical interactions between the heater channel
and the temperature channel. We adopted the heater simulation from Simulink
[43] and the model of the heating influence can be described as follows:

dQ

dt
= (Theater − Troom) ·Mdot · c (1)

where dQ
dt represents heat flow from the heater into the room. c is the heat

capacity of air at constant pressure. Mdot is the air mass flow rate through the
heater (kg/min). Theater is the temperature of hot air from the heater and Troom

is the indoor temperature at the same time. These parameters are pre-defined
before the simulation starts. For different devices, adjusting relevant parameters
deals with the various situations. If the device cannot be easily modeled based on
this equation, it allows the function to directly change the value of the physical
channel by a minute. Once the state of the heater is on, the room gains heat and
temperature changes over time.

Table 1: Summary of interactions of 16 IoT devices. Xrepresents the physical
interaction is identified which means that the IoT device has the influence on
the physical channel.

Device Temperature Humidity Smoke Motion Illuminance Ultraviolet Water
AC X X

Heater X X
Vent X X
Fan X

Window X X X X
Radiator X X

Humidifier X
Coffee Machine X

Robot X
Stove X X
PC X
TV X

Air Fryer X X
Light X
Shade X X X
Valve X

4.3 Channels

In an IoT environment, the automation is achieved by producing interactions via
channels. More specifically, the devices can communicate and act under a certain
condition via network, such as Wi-Fi, Zigbee. Moreover, the physical environ-
ment can enable the device to activate the automation including temperature,
illuminance, etc. Thus, there are two kinds of channels including cyberspace
channels and physical channels. In this section, we introduce how to model the
both types of channels.

Cyberspace channels: In order to model the interaction in cyberspace, we
create a time channel measured in minutes. The IoT apps are always executed
with one or two minutes’ delay [35]. In the TAESim, we assume that channels
and devices update their states every minute, since the time in simulation is
different from it in the real world. To simulate a dynamic system, we compute



TAESim: A Testbed for IoT Security Analysis of Trigger-action Environment 11

its states at successive time steps over a specified time span. Time steps are
time intervals when the computation happens. The size of this time interval is
called step size. The process of computing the states of a model in this manner is
known as solving the model. Besides, we need a solver that applies a numerical
method to solve the set of ordinary differential equations that represent the
model. Through this computation, it determines the time of the next simulation
step. In the process of solving this initial value problem, the solver also can
satisfy the accuracy requirements. We use the Fixed-step solver and set the time
step as one, which means that the stop time represents the minutes that the
simulation executes.

Time is an important factor to simulate the smart home environment. In
order to fit several IoT apps that require time as the condition, we create a time
channel through a time block in Simulink. Moreover, we use a Function block to
convert minutes to hours and days for data analysis. Similar to modeling devices,
the Data Store Memory block stores the value and can be outputted to trigger
devices. Importantly, none of the devices can change the time channel.

Besides, many IoT apps complete the automation tasks based on a specified
condition. For example, an official SmartThing app usually uses the scheduled-
mode-change.groovy to change mode at a specific time of day. To properly cap-
ture the cyberspace interactions, we create another channel that is the home
mode. According to the practical usage of smart home, we design that there are
three home modes including Home, Occupied, and Sleep. The home mode can
be a condition in an IoT app and changing of home mode can be either trigger
or action. The home mode channel is editable to the IoT apps (Home is 0; Sleep
is 1; Occupied is 2). Similarly, it also can be read by a Data Store Read block.

Physical channels: Simulating the physical channels at run-time can prop-
erly capture the interactions between devices. The physical modeling process is
often difficult to replicate because many complex factors are necessary to be
considered such as the house geometry, materials of the house, outdoor weather
[12] [21][38][45][47]. These factors collaboratively influence physical channels in-
cluding temperature, humidity, illuminance, smoke and so on. To address the
physical channel modeling challenges, we first identify the physical channels and
interactions in an IoT system. Table 1 shows the summary of implicit and ex-
plicit physical interactions [19]. In order to simulate both implicit and explicit
interactions, we use the Function and Subsystem block in Simulink’s library to
model the states and changes of physical channels.

We create seven physical channels in this simulation testbed including tem-
perature, humidity, smoke, motion, illuminance, ultraviolet, and water. For each
channel, a Data Store Memory block stores the value that represents the cor-
responding unit on the specific scale. For example, the Data Store Memory of
indoor temperature channel stores the degree Celsius that measures the tem-
perature on the Celsius scale. It can be affected by many factors such as the
outdoor temperature, heater, fan, etc. We provide a function that defines the
daily change of the temperature based on the changes in outdoor temperature.
The way device affects the temperature channel is similar.



12 Ban et al.

The model process is adapted from the example officially provided by Simulink
[43]. In this model, we present how to model the indoor heat losses and then
give detailed parameters. (

dQ

dt

)
losses

=
Tin − Tout

Req
(2)

dTroom

dt
=

1

Mair · c
·
(
−fQlosses

dt

)
(3)

where
(

dQ
dt

)
losses

is the heat loss in the room. Tin and Tout are the temperature

for indoor and outdoor, respectively. Req is the equivalent thermal resistance
of the room, which can be calculated by pre-defined parameters including room
geometry (size of room; size and number of window) and thermal properties
and resistance of the room. dTroom

dt is the temperature time derivative. Mair

represents the mass of air indoor and c is the heat capacity of air at constant
pressure. To simulate the environment, we use the default values as the initial
set for a few characters of room and outdoor temperature.

The humidifiers are set to vary within the range 0% to 100% since most
humidifiers sense and report the relative humidity. The relative humidity is the
proportion of water vapor in the air relative to the maximum water vapor that
can be held in the air at a given temperature, and thus a temperature-dependent
measure. The parameter for modeling humidity is different from the temperature
changes. We leave the humidity channel modeling for future work because it is
hard to model the humidity. To simplify the problem, if a device has either an
implicit or explicit effect on humidity, a function can rise the value to the Data
Store Memory of humidity.

In addition, the other physical channels have been set to the default value in
advance and we leave the modeling process for future work. To quickly set up a
simulation in a very basic configuration, the default value is specified before the
simulation starts to fit the modeling requirements.

4.4 Apps

Home automation rules, called IoT apps, are the core of the smart home to
automatically trigger the devices to act. Generally, the IoT apps have three
elements: trigger event, condition, and action event. The trigger event is either
a specific action of a device such as turning on/off or reaching a threshold in
a physical channel such as temperature. The condition is optional in IoT apps
and can be either from cyberspace or physical space. Many IoT apps have only
trigger events and action events to compose automation. SmartThings supports
multiple conditions while IFTTT allows users to specify one condition for one
applet. The action event is the capability of the device. Importantly, in an IoT
ecosystem, an action event is possibly another app’s trigger event composing
a rule chain. Thus it is difficult to figure out the real rule chain by statically



TAESim: A Testbed for IoT Security Analysis of Trigger-action Environment 13

analyzing the IoT apps. With the help of Simulink, we attempt to model the
behaviors of an IoT app using several blocks from the native library.

Figure 2 shows an app named ‘Turn off light if motion detected’. It is an
official SmartApp from the SmartThings community written in the Groovy pro-
gramming language. The testbed needs the description of every IoT app because
the necessary elements for setting simulation are trigger and action events. The
description of this app is ‘Turns off a device if there is motion’ and it indicates
at least two devices exist in this IoT ecosystem: a user-specified device and a
motion sensor. In Figure 2, an area contains all blocks and the apps’ name is
shown on the top. The block named ‘motionSensor’ is a ‘Data Store Read’ block,
that outputs the state of the motion sensor to an ‘if’ block. There are basically
two ways that could happen. Firstly, if the motion sensor is activated by the
movement, the signal from the ‘Data Store Read’ block is ‘1’ and the ‘if’ block
is executed, which means the ‘constant’ block sends the signal ‘0’ to the device
block. Otherwise, it reaches the ‘terminator’ block which is used to terminate
output signals. Since we create the single model file for reuse, none of the ‘Data
Store Memory’ blocks is added in this file and ‘Data Store Read’ blocks are
missing in the corresponding data store. It leads such ‘Data Store Read’ blocks
to be highlighted as warnings. Once the app is integrated into a complete digital
twin of the IoT ecosystem in the testbed with all relevant ‘Data Store Memory’
blocks, the warnings disappear. In this example, we model the light as the simu-
lated device. Finally, the Data Store Write receive the constant and refresh the
state of light.

Fig. 2: An SmartApps ‘Turn off light if motion detected’ from official Smart-
Things repository

4.5 Unexpected factors

In order to explore all possible situations and discover potential risky interac-
tions in the real world, we deem the unexpected factors as those events that
occasionally occur and lead to an unknown consequence. There are two factors
we adopt in the testbed: Human interaction and broken devices.

Human interactions: We mainly consider interactions between devices and
direct users’ interactions in the environment. It needs the dynamic analysis,
which may be disturbed by human activities like moving. This actively demon-
strates that human activities results in a false-positive interaction in the analysis.



14 Ban et al.

The testbed is expected to randomly imitate human behaviors, that may affect
the device automation. We consider this as future work.

Broken devices: Previous research investigates the inter-rule vulnerability
under a perfect situation that all devices work appropriately. However, a part or
whole home may have no power. During the simulation, the device state changes
under the situation of apps usage. We design a random modular to turn off some
devices to simulate the broken device.

Device10 Device100 Device1000 Device50 Device500 Device5000

0

10

20

30

40

50

60

T
i
m
e

1 1 1 1 1

3

1 1 1 1 1

5

1 1

2

1 1

7

2 2

3

2 2

12

6

7

16

6

11

61

60 Minutes

360 Minutes

720 Minutes

1440 Minutes

10080 Minutes

Fig. 3: The overhead of testbed on large scale simulation.

5 Evaluation and Case Study

5.1 Evaluation

For evaluating the overhead of the testbed simulation, we tested the average
simulation time of different Stop Time settings in groups of devices. The results
are output from the Simulation Manager in Simulink. We performed the exper-
iments on a desktop computer with a 2.1Ghz 2-core Intel Xeon Silver processor
and 64GB RAM, using MATLAB 2018b version with one active worker. We ran
each test 10 times in each group and reported the average result. For each group,
the marked number of devices were modeled in a single file and we simulated
with different Stop Time settings including 60, 360, 720, 1440, 10080. The Stop
Time is viewed as the minutes in the simulation. So we designed the simulation
with a large number of devices that continually ran from minutes to days. For
example, the simulation with 5000 devices and 10080 minutes represent that
devices are running for 7 days. We selected 10 modeled devices and repeatedly
add them into the simulation. As is shown in Figure 3, the time consumption
of Stop Time 60, 360, 720 for the four groups (Device 10, Device100, Device50,
Device500) is 1 second in real-world and the time consumption of Stop Time



TAESim: A Testbed for IoT Security Analysis of Trigger-action Environment 15

1440 for them is 2 seconds. For simulation of 10080 minutes, four groups (Device
10, Device100, Device50, Device500) cost 6 to 11 seconds, which is roughly 5
times the result of 1440 minutes. The last group with 5000 devices consume 3,
5, 7, 12, 61 seconds for each Stop Time setting, respectively.

Fig. 4: The results of simulation with two devices, a heater and an AC. Value
1 indicates the state on for device and the value 0 means the device is in off
state. A physical channel is modeled to represents the indoor temperature and
its change over time.

5.2 Case study

In this section, we demonstrate a few case studies to show the effectiveness and
usability of our testbed. The first study case models a smart home described in
[10]. In this simple scenario, a misconfiguration causes a policy violation where
the AC and heater run at the same time when the temperature thresholds of
heating and cooling are not configured properly. Thus these errors depend on the
user’s configuration of apps’ attributes at the installation time. Specifically, we
use the same IoT apps obtained from the official SmartThings community and
simulate two apps: the first one indicates that if the room temperature is higher
than the user’s input, then turn on the heater; the second one is opposite to the
first one, i.e., if the temperature is greater than a threshold, then turn on the
AC. We set the temperature thresholds to 27◦C and 32◦C for the heater and AC,
respectively. The start time for simulation time is 0 minute and the stop time is
1440 minute, which corresponds to 24 hours, i.e., a single day. The temperature
randomly varies in the range of 10 to 20, which represents a relatively cold day.
Taking advantage of the parallel simulation, we run the simulation 50 times and
select the first one that violates the security and safety policy. As shown in Figure



16 Ban et al.

(a)

(b)

Fig. 5: In (a), time changed in a single day is illustrated and three home mode
(Home; Sleep; Occupied) changed over time is represented. In (b), three devices
are simulated including a window, a heater, and a motion sensor.



TAESim: A Testbed for IoT Security Analysis of Trigger-action Environment 17

4, the x and y coordinates represent the testbed simulation time in minutes and
the temperature value, respectively. The heater is turned on when the simulation
time is around 350. When the temperature reaches 32, AC is turned on at time
440. Since the policy claims that heater and AC must not be switched on at the
same time, it violates the security and safety policy defined in [10].

We conducted a second case study to demonstrate the effectiveness of the
testbed against indirect attacks that exploit temporal physical interactions at
run-time. In this scenario, three smart devices are deployed: a motion sensor, a
heater, and a smart window. We assume that a vacuum machine unexpectedly
operates or is exploited by an attacker. Eventually, it changes the home mode to
‘Occupied’ due to the trigger of the motion sensor. Then, the change of the home
mode leads to the activation of the heater. Further, a window is opened when the
temperature reaches a threshold predefined by the user. We define mode ‘Sleep’
is from 0 to 6 o’clock; ‘Home’ is from 6 to 8 o’clock and from 18 to 24 o’clock;
and ‘Occupied’ is from 8 to 18 o’clock. And the threshold is defined as 40◦C.
Similar to the first case study, the initial temperature is randomly generated
within the same range. We run the simulation using parallel computations and
show the first violation results in Figure 5. The window should have been kept
closed when the home mode is ‘Sleep’, putting users at risk of invasion.

6 Conclusion

In this work, we propose TAESim, a simulation testbed for IoT safety and se-
curity analysis of trigger-action environment. The simulation can be viewed as
the digital twin of an IoT system with cyberspace and physical interactions. We
implement this testbed to correctly model the behaviors of IoT apps, states of
devices, and channels. The testbed supports large-scale analysis with no limita-
tion of types of IoT devices and apps. The states of devices and channels can
be randomly specified for test case generation. We conduct the experiments to
show its efficiency and present the case studies to show its effectiveness. The
results show that most simulations only consume 1-3 seconds. Simulating 5000
devices with the Stop Time 43200 minutes takes 275 seconds. We also present
two case studies, that show that the testbed can properly simulate the trigger
action environment and discover the safety and security violations.

References

1. Adjih, C., Baccelli, E., Fleury, E., Harter, G., Mitton, N., Noel, T., Pissard-
Gibollet, R., Saint-Marcel, F., Schreiner, G., Vandaele, J., et al.: Fit iot-lab: A
large scale open experimental iot testbed. In: 2015 IEEE 2nd World Forum on
Internet of Things (WF-IoT). pp. 459–464. IEEE (2015)

2. Alrawi, O., Lever, C., Antonakakis, M., Monrose, F.: Sok: Security evaluation of
home-based iot deployments. In: 2019 IEEE symposium on security and privacy
(sp). pp. 1362–1380. IEEE (2019)



18 Ban et al.

3. Bastys, I., Balliu, M., Sabelfeld, A.: If this then what? controlling flows in iot
apps. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. pp. 1102–1119 (2018)

4. Birnbach, S., Eberz, S.: Peeves: Physical event verification in smart homes (2019)
5. Cadar, C., Godefroid, P., Khurshid, S., Pasareanu, C.S., Sen, K., Tillmann, N.,

Visser, W.: Symbolic execution for software testing in practice: preliminary assess-
ment. In: 2011 33rd International Conference on Software Engineering (ICSE). pp.
1066–1071. IEEE (2011)

6. Carter, P., Mulliner, C., Lindorfer, M., Robertson, W., Kirda, E.: Curiousdroid:
automated user interface interaction for android application analysis sandboxes.
In: International Conference on Financial Cryptography and Data Security. pp.
231–249. Springer (2016)

7. Celik, Z.B., Babun, L., Sikder, A.K., Aksu, H., Tan, G., McDaniel, P., Uluagac,
A.S.: Sensitive information tracking in commodity iot. In: 27th {USENIX} Security
Symposium ({USENIX} Security 18). pp. 1687–1704 (2018)

8. Celik, Z.B., McDaniel, P., Tan, G.: Soteria: Automated iot safety and se-
curity analysis. In: 2018 USENIX Annual Technical Conference (USENIX
ATC 18). pp. 147–158. USENIX Association, Boston, MA (Jul 2018),
https://www.usenix.org/conference/atc18/presentation/celik

9. Celik, Z.B., McDaniel, P., Tan, G.: Soteria: Automated iot safety and security
analysis. In: 2018 {USENIX} Annual Technical Conference ({USENIX}{ATC} 18).
pp. 147–158 (2018)

10. Celik, Z.B., Tan, G., McDaniel, P.D.: Iotguard: Dynamic enforcement of security
and safety policy in commodity iot. In: NDSS (2019)

11. Chen, J., Diao, W., Zhao, Q., Zuo, C., Lin, Z., Wang, X., Lau, W.C., Sun, M.,
Yang, R., Zhang, K.: Iotfuzzer: Discovering memory corruptions in iot through
app-based fuzzing. In: NDSS (2018)

12. Cheng, Z., Shein, W.W., Tan, Y., Lim, A.O.: Energy efficient thermal comfort
control for cyber-physical home system. In: 2013 IEEE International Conference
on Smart Grid Communications (SmartGridComm). pp. 797–802. IEEE (2013)

13. Chi, H., Zeng, Q., Du, X., Yu, J.: Cross-app threats in smart homes: Categorization,
detection and handling. arXiv preprint arXiv:1808.02125 (2018)

14. Chi, H., Zeng, Q., Du, X., Yu, J.: Cross-app interference threats in smart homes:
Categorization, detection and handling. In: 2020 50th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN). pp. 411–423.
IEEE (2020)

15. Choudhary, S.R., Gorla, A., Orso, A.: Automated test input generation for an-
droid: Are we there yet?(e). In: 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE). pp. 429–440. IEEE (2015)

16. D’Angelo, G., Ferretti, S., Ghini, V.: Simulation of the internet of things. In: 2016
International Conference on High Performance Computing & Simulation (HPCS).
pp. 1–8. IEEE (2016)

17. Ding, W., Hu, H.: On the safety of iot device physical interaction con-
trol. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2018, Toronto, ON, Canada, October 15-19,
2018. pp. 832–846. ACM (2018). https://doi.org/10.1145/3243734.3243865,
https://doi.org/10.1145/3243734.3243865

18. Ding, W., Hu, H.: On the safety of iot device physical interaction control. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. pp. 832–846 (2018)



TAESim: A Testbed for IoT Security Analysis of Trigger-action Environment 19

19. Ding, W., Hu, H., Cheng, L.: Iotsafe: Enforcing safety and security policy with real
iot physical interaction discovery (2021)

20. Egham: Gartner says 8.4 billion connected ”things” will be in use in 2017,
up 31 percent from 2016. https://www.gartner.com/en/newsroom/press-
releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-
up-31-percent-from-2016 (2017)

21. En, O.S., Yoshiki, M., Lim, Y., Tan, Y.: Predictive thermal comfort control for
cyber-physical home systems. In: 2018 13th Annual Conference on System of Sys-
tems Engineering (SoSE). pp. 444–451. IEEE (2018)

22. Fernandes, E., Jung, J., Prakash, A.: Security analysis of emerging smart home
applications. In: IEEE Symposium on Security and Privacy, SP 2016, San Jose,
CA, USA, May 22-26, 2016. pp. 636–654. IEEE Computer Society (2016).
https://doi.org/10.1109/SP.2016.44, https://doi.org/10.1109/SP.2016.44

23. Fernandes, E., Paupore, J., Rahmati, A., Simionato, D., Conti, M., Prakash, A.:
Flowfence: Practical data protection for emerging iot application frameworks. In:
25th {USENIX} security symposium ({USENIX} Security 16). pp. 531–548 (2016)

24. Fernandes, E., Rahmati, A., Jung, J., Prakash, A.: Decoupled-ifttt: Constrain-
ing privilege in trigger-action platforms for the internet of things. arXiv preprint
arXiv:1707.00405 (2017)

25. Fernandes, E., Rahmati, A., Jung, J., Prakash, A.: Decentralized action integrity
for trigger-action iot platforms. In: Proceedings 2018 Network and Distributed
System Security Symposium (2018)

26. Fisher, D.: Pair of bugs open honeywell home controllers up to easy hacks (2015)
27. Fouladi, B., Ghanoun, S.: Honey, i’m home!!, hacking zwave home automation

systems. Black Hat USA (2013)
28. Han, S.N., Lee, G.M., Crespi, N., Heo, K., Van Luong, N., Brut, M., Gatellier,

P.: Dpwsim: A simulation toolkit for iot applications using devices profile for web
services. In: 2014 IEEE World Forum on Internet of Things (WF-IoT). pp. 544–547.
IEEE (2014)

29. Jia, Y.J., Chen, Q.A., Wang, S., Rahmati, A., Fernandes, E., Mao, Z.M., Prakash,
A., Unviersity, S.: Contexiot: Towards providing contextual integrity to appified
iot platforms. In: NDSS (2017)

30. Kecskemeti, G., Casale, G., Jha, D.N., Lyon, J., Ranjan, R.: Modelling and simu-
lation challenges in internet of things. IEEE cloud computing 4(1), 62–69 (2017)

31. Kolias, C., Kambourakis, G., Stavrou, A., Voas, J.M.: Ddos in the
iot: Mirai and other botnets. IEEE Computer 50(7), 80–84 (2017).
https://doi.org/10.1109/MC.2017.201, https://doi.org/10.1109/MC.2017.201

32. Lee, E.A., Niknami, M., Nouidui, T.S., Wetter, M.: Modeling and simulating cyber-
physical systems using cyphysim. In: 2015 International Conference on Embedded
Software (EMSOFT). pp. 115–124. IEEE (2015)

33. Lomas, N.: Critical flaw identified in zigbee smart home devices (2015)
34. Mao, K., Harman, M., Jia, Y.: Sapienz: Multi-objective automated testing for an-

droid applications. In: Proceedings of the 25th International Symposium on Soft-
ware Testing and Analysis. pp. 94–105 (2016)

35. Mi, X., Qian, F., Zhang, Y., Wang, X.: An empirical characterization of ifttt:
ecosystem, usage, and performance. In: Proceedings of the 2017 Internet Measure-
ment Conference. pp. 398–404 (2017)

36. Nguyen, D.T., Song, C., Qian, Z., Krishnamurthy, S.V., Colbert, E.J.M.,
McDaniel, P.D.: Iotsan: fortifying the safety of iot systems. In: Dim-
itropoulos, X.A., Dainotti, A., Vanbever, L., Benson, T. (eds.) Proceed-



20 Ban et al.

ings of the 14th International Conference on emerging Networking EXper-
iments and Technologies, CoNEXT 2018, Heraklion, Greece, December 04-
07, 2018. pp. 191–203. ACM (2018). https://doi.org/10.1145/3281411.3281440,
https://doi.org/10.1145/3281411.3281440

37. Nguyen, D.T., Song, C., Qian, Z., Krishnamurthy, S.V., Colbert, E.J., McDaniel,
P.: Iotsan: Fortifying the safety of iot systems. In: Proceedings of the 14th Inter-
national Conference on emerging Networking EXperiments and Technologies. pp.
191–203 (2018)

38. Ott, W.R.: Mathematical models for predicting indoor air quality from smoking
activity. Environmental Health Perspectives 107(suppl 2), 375–381 (1999)

39. Rastogi, V., Chen, Y., Enck, W.: Appsplayground: automatic security analysis of
smartphone applications. In: Proceedings of the third ACM conference on Data
and application security and privacy. pp. 209–220 (2013)

40. Ronen, E., Shamir, A., Weingarten, A., O’Flynn, C.: Iot goes nuclear: Creating a
zigbee chain reaction. IEEE Security Privacy 16(1), 54–62 (2018)

41. Ronen, E., Shamir, A.: Extended functionality attacks on iot devices: The case
of smart lights. In: 2016 IEEE European Symposium on Security and Privacy
(EuroS&P). pp. 3–12. IEEE (2016)

42. Ronen, E., Shamir, A., Weingarten, A.O., O’Flynn, C.: Iot goes nuclear: Creating
a zigbee chain reaction. In: 2017 IEEE Symposium on Security and Privacy (SP).
pp. 195–212. IEEE (2017)

43. Simulink, M.: Thermal model of a house, https://www.mathworks.com/help/simuli-
nk/examples/thermal-model-of-a-house.html

44. Sivaraman, V., Chan, D., Earl, D., Boreli, R.: Smart-phones attacking smart-
homes. In: Proceedings of the 9th ACM Conference on Security & Privacy in
Wireless and Mobile Networks. pp. 195–200 (2016)

45. Son, N.H., Tan, Y.: Simulation-based short-term model predictive control for hvac
systems of residential houses. VNU Journal of Science: Computer Science and
Communication Engineering 35(1) (2019)

46. Surbatovich, M., Aljuraidan, J., Bauer, L., Das, A., Jia, L.: Some recipes can do
more than spoil your appetite: Analyzing the security and privacy risks of ifttt
recipes. In: Proceedings of the 26th International Conference on World Wide Web.
pp. 1501–1510 (2017)

47. TenWolde, A., Pilon, C.L.: The effect of indoor humidity on water vapor release
in homes (2007)

48. Tian, Y., Zhang, N., Lin, Y.H., Wang, X., Ur, B., Guo, X., Tague, P.: Smartauth:
User-centered authorization for the internet of things. In: 26th {USENIX} Security
Symposium ({USENIX} Security 17). pp. 361–378 (2017)

49. Vidas, T., Tan, J., Nahata, J., Tan, C.L., Christin, N., Tague, P.: A5: Automated
analysis of adversarial android applications. In: Proceedings of the 4th ACM Work-
shop on Security and Privacy in Smartphones & Mobile Devices. pp. 39–50 (2014)

50. Yu, T., Sekar, V., Seshan, S., Agarwal, Y., Xu, C.: Handling a trillion (unfixable)
flaws on a billion devices: Rethinking network security for the internet-of-things.
In: Proceedings of the 14th ACM Workshop on Hot Topics in Networks. pp. 1–7
(2015)

51. Zhang, W., Meng, Y., Liu, Y., Zhang, X., Zhang, Y., Zhu, H.: Homonit: Monitoring
smart home apps from encrypted traffic. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. pp. 1074–1088 (2018)


